ON AN INTEGRAL EQUATION OF RADIATION - CONDUCTION
HEAT TRANSFER
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We present a method for solving analytically the linearized integral equation of radiation—con-
duction heat transfer. Under certain conditions, realized in practice in heat conduction stud-
ies of translucent materials, a sufficiently precise solution may be obtained in closed form,

When the two mechanisms of energy transport, namely radiation and heat conduction, exist ina
medium, the temperature field, as is well known, may be described by a nonlinear integro-differential
equation [1-5]. Under certain conditions this equation can be linearized in such a way that the resulting
mathematical simplification introduces negligible distortion in the temperature field. Realization of these
conditions in practice occurs when the total temperature drop AT through a layer is significantly less than
the absolute value of the general temperature background, T; [2, 6, 11]. Thus, in particular, an experi-
ment can be arranged for studying the thermophysical characteristics of translucent materials in which
radiation— conduction heat transfer is present. The linearized equation is a Fredholm integral equation of
the second kind, so that the questions as to its solvability and the uniqueness of a solution are answerable
through the general theory and require no special consideration, We present below an effective method for
obtaining this solution. So far as is known to us, a practical solution in analytical form of the equation of
radiation-- conduction heat transfer has not been obtained up to the present time: either the form of the
function describing the temperature field was assumed (s, for example, in [2, 5, 6]), effectively eliminat-
ing thereby any need to solve the equation, replacing the latter instead by the evaluation of certain param-
eters present in the function assumed; or the solution was obtained numerically on an electronic digital
computer for separate special cases [4, 8].

We present here a method for studying the simplest case, namely, that of radiation —conduction in a
planar wall, with absolutely black boundaries and without heat sources, when the linearized equation has the
form [11]
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C is a constant determined by the boundary condition ¢{0) = 0, Consideration of the more general case,in-
volving reflecting boundary walls, entails no major changes; it merely increases the volume of calculations
associated with the more complicated free function of Eq. (1) and its kernel, the latter depending now on both
the difference and the sum of its arguments [11]. When internal heat sources are present, with tempera-
ture-dependent strengths, only the form of f(7) is affected,

Since the kernel of Eq. (1) does not possess sufficient smoothness, a known procedure for approxi-
mating the solution of such equations, consisting of replacing the kernel by a degenerate kernel by repre-
senting it by a section of a Fourier series, leads to a linear algebraic system of higher order [9]. This
circumstance does not permit us to obtain the solution in analytical form in the usual way, which, in a
number of cases, is very necessary.
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A First Approximation

We study the nature of the Fourier coefficients for the kernel of the equation, considered as a func-
tion of a single variable varying over the interval (-1, 1). Since the kernel is symmetric we may select as
our orthonormal system a trigonometric system of cosines; we then have
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Further, following the usual procedure for improving the convergence of a series, we sum out the slowly
converging part of the series in Eq. (2}, the part associated with the jumps of the function and its deriva-
tives. In addition, we employ the known relations [10]
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Here By, (x) are the Bernoulli polynomials and the Pp(x) are polynomials compatible with them, defined
through the recursion relation
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Then we obtain
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Thus the kernel of Eq, (1) is represented in the form of a sum of an algebraic function and a trigonometric
kernel, the coefficients of which decrease fairly rapidly. We note that for small values of 7, (which corre-
sponds to small thicknesses or high transparency of the material), the second term in Eq. (5) may be dis-
carded and k(7, 7') then serves as a good approximation for the kernel of Eq. (1). In Table 1 we show the
values of the error A due to such an approximation for two values of 7.

If we replace E; | 7—7'{ by k(7, '), we obtain, in place of Eq. (1), the new integral equation (at the
same time, we have carried out the change of variables x= 7-1; y = 7'-1)
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]
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TABLE 1. Values of the Error A for Two the solution of which may be obtained in closed form and

Values of 7, is a first approximation to the solution of Eq. (1), Dif-
ferentiating Eq. (7) three times, we have
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where
U(x) = Xe’"" (g femidx ) de, U,(x) = Se‘m" (5' femdx ) dx;  m? = 2N.

Substituting Eq. (9) into Eq. (7) and equating coefficients having the same powers of x, we obtain the follow-
ing three equations for determining the constants Cy, C,, and Cj:
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Here we have introduced the notation
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After completing the calculations, we obtain
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From Egs. (10) we can obtain explicit expressions for C; and C,, which, in view of their complexity, will
not be given here (see [11]), If in Eq. (11) we put 7 = 7,5, we obtain an equation for determining the total
drop AT through a layer,

Using Bateman's method [9] to construct the successive corrections (taking k(7, 7') as the auxiliary
kernel in this method), we can estimate the error of the first approximation, It turns out that in a number
of cases ¢,(7) is very close to the exact solution of Eq. (1). Thus, for example, for 7, = 0,138 and N = 24,8
the error of ¢,(7) does not exceed the quantity 6.7-1073 [If].

Determination of the Characteristic Values of Eq. (1)

This can also be accomplished by using the approximated kernel, To do this it is sufficient to put
f(x) = 0 and equate the determinant of the system (10) to zero; this leads to the two equations:

1
thz=z| 1
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the roots z, of which are connected with the approximate values of the characteristic numbers of the kernel
—Eg | 7—7'| by the equations
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It is readily seen that Eq. (12) has z = 0 as its only root, so that we need consider only Eq. (13). The cor~
responding approximate expressions for the characteristic functions may be obtained from Eq. (9). They
have the form

(15)
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We clarify now just how close the values ﬁn so obtained are to the true critical values of the param-
eter N. For this purpose we write the integral operator of Eq. (1) in the form of a sum K¢ = K;¢ + K,¢,
where K; and K, are operators with kernels corresponding to the first and second terms in Eq. (5). As is
well known [7], the characteristic numbers uy = 1/Ny of the operator K and jip = 1/Np of the operator K,
are not separated from one another by more than [[K,[|. We have
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and by virtue of the uniform convergence of the 1ast series we find, after making the calculations, that
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The series in the right member of inequality (16) converges no worse than 1/n% thus this inequality en-
ables us to obtain the necessary estimate. Calculations made for 7; = 0.2 and 7, = 0.55 show that the
maximum characteristic values in these two cases amount to — 0,119 and —0.324, the errors made in de-
termining them, to a first approximation, being no greater than 0.5% and 3.9%, respectively.

If the optical thickness 7, of a layer is of the order of unity or larger, the first approximation turns
out to be very crude, a fact which reflects the poor approximation of the kernel of the equation by means
of the function k(7, 7'). 1In this case it behoves us to retain the first few terms of the series in Eq. (5),
their number being, however, comparatively small (the coefficients By, as is evident, decrease as 1/n%).
The largest error of the approximation corresponds to the values 7= 7'; therefore the required number
of terms of the series in Eq. (5) can be determined by equating the sum k(0) + By + By + ... + Bp to E3(0)
=1/2. Substituting the new expression for the kernel into Eq. (1) and differentiating three times as before,
we obtain a differential equation whose solution yields a more precise approximation to the solution of the
original equation:
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The coefficients Ci, Hk, and Fk may be obtained from the system of equations
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Calculations carried out for 7 = 1.88 show that when a total of two terms of Eq. (5) is taken, we ob-
tain the value of Ey | 7—7'| with an error no greater than 8%. In this case the system (18) consists of
seven equations, so that determining all the coefficients presents no problems.

NOTATION
AT is the temperature drop in the layer;
0 is the temperature of the surface at the heater;

is the thermal conductivity;

is the absorption index,

is the Stefan constant;

is the refraction index;

is the total energy flux through the layer;
is the thickness of the layer;

Ty = kh is the optical thickness;

T=kx and 7' = k& are the dimensionless coordinates;

BO S 9 R >
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o(r) = (TO—T(T))/ T, is the dimensionless relative temperature;

Eq(X) = jz(e"Xt/tn) dt are the integro-exponential functions;
1

N = 8a20T3/k)\

a = Q/8n’eT}.
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